Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Pathogens ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38668296

ABSTRACT

Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.

2.
Open Med (Wars) ; 19(1): 20240946, 2024.
Article in English | MEDLINE | ID: mdl-38584841

ABSTRACT

Esophageal squamous cell carcinoma (ESCC), a highly aggressive subtype of esophageal cancer, is characterized by late-stage diagnosis and limited treatment options. Recent advancements in transcriptome sequencing technologies have illuminated the molecular intricacies of ESCC tumors, revealing metabolic reprogramming as a prominent feature. Specifically, the Warburg effect, marked by enhanced glycolysis, has emerged as a hallmark of cancer, offering potential therapeutic targets. In this study, we comprehensively analyzed bulk RNA-seq data from ESCC patients, uncovering elevated SRA1 expression in ESCC development and a poorer prognosis. Silencing of SRA1 led to a modulation of glycolysis-related products and a shift in PKM2 expression. Our findings shed light on the intricate molecular landscape of ESCC, highlighting SRA1 as a potential therapeutic target to disrupt glycolysis-dependent energy production. This metabolic reprogramming may hold the key to innovative treatment strategies for ESCC, ultimately improving patient outcomes.

3.
Int J Biol Macromol ; 264(Pt 2): 130693, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458291

ABSTRACT

The accessory proteins of coronaviruses play a crucial role in facilitating virus-host interactions and modulating host immune responses. Previous study demonstrated that the NS7a protein of porcine deltacoronavirus (PDCoV) partially hindered the host immune response by impeding the induction of IFN-α/ß. However, the potential additional functions of NS7a protein in evading innate immunity have yet to be elucidated. This study aimed to investigate the mechanism of PDCoV NS7a protein regulating the JAK/STAT signaling pathway. We presented evidence that NS7a effectively inhibited ISRE promoter activity and ISGs transcription. NS7a hindered STAT1 phosphorylation, interacted with STAT2 and IRF9, and further impeded the formation and nuclear accumulation of ISGF3. Furthermore, comparative analysis of NS7a across different PDCoV strains revealed that the mutation of Leu4 to Pro4 led to an increase in the molecular weights of NS7a and disrupted its inhibition on the JAK/STAT signaling pathway. This finding implied that NS7a with key amino acids may be an indicator of virulence for PDCoV strains. Taken together, this study revealed a novel role of NS7a in antagonizing the IFN-I signaling pathway.


Subject(s)
Deltacoronavirus , Janus Kinases , Signal Transduction , Animals , Swine , Janus Kinases/genetics , STAT Transcription Factors/genetics , Interferon-Stimulated Gene Factor 3
4.
Vaccine ; 42(9): 2347-2356, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38443277

ABSTRACT

Human immunodeficiency virus (HIV) infects and depletes CD4+ T-cells, resulting in Acquired Immunodeficiency Syndrome (AIDS) and death. Despite numerous clinical trials, there is no licensed HIV vaccine. The HIV envelope glycoprotein (env) is a major target for vaccine development, especially for the development of antibody-mediated protection. In this study, we used J paramyxovirus (JPV) as a viral vector to express HIV-env. We replaced the JPV small hydrophobic (SH) gene with HIV-env (rJPV-env). Intranasal rJPV-env immunization induced anti-HIV-gp120 IgG antibodies in mice. Furthermore, we examined the immunogenicity of homologous and heterologous prime/boost regimens with rJPV-env, parainfluenza virus 5 (rPIV5)-vectored HIV-env, and HIV-Gag-Env virus-like particles (VLPs). The rJPV-env/rPIV5-env heterologous prime/boost regimen induced the strongest humoral and cellular responses. Introducing a third dose of immunization, mice that received a viral-vectored prime had high levels of HIV-env-specific cellular responses, with group rJPV-env/rPIV5-env/VLP having the highest. Together, this work indicates that a heterologous combination of viral-vectored HIV-env vaccines and a HIV-Gag-Env VLP induces high levels of humoral and cellular responses against HIV in mice.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Humans , Animals , Mice , Genetic Vectors , T-Lymphocytes , HIV Antibodies , HIV Infections/prevention & control
5.
J Biol Chem ; 300(3): 105779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395305

ABSTRACT

The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Proteasome Endopeptidase Complex , Swine Diseases , Viral Nonstructural Proteins , Animals , Acetylation , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Swine , Ubiquitins/metabolism , Swine Diseases/metabolism , Swine Diseases/virology , HEK293 Cells , Vero Cells , Humans , Chlorocebus aethiops , Viral Nonstructural Proteins/metabolism
6.
Adv Mater ; 36(15): e2309669, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216154

ABSTRACT

Outbreaks of viral infectious diseases, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV), pose a great threat to human health. Viral spread is accelerated worldwide by the development of cold chain logistics; Therefore, an effective antiviral approach is required. In this study, it is aimed to develop a distinct antiviral strategy using nanozymes with low-temperature adaptability, suitable for cold chain logistics. Phosphorus (P) atoms are added to the remote counter position of Fe-N-C center to prepare FeN4P2-single-atom nanozymes (SAzymes), exhibiting lipid oxidase (OXD)-like activity at cold chain temperatures (-20, and 4 °C). This feature enables FeN4P2-SAzymes to disrupt multiple enveloped viruses (human, swine, and avian coronaviruses, and H1-H11 subtypes of IAV) by catalyzing lipid peroxidation of the viral lipid envelope. Under the simulated conditions of cold chain logistics, FeN4P2-SAzymes are successfully applied as antiviral coatings on outer packaging and personal protective equipment; Therefore, FeN4P2-SAzymes with low-temperature adaptability and broad-spectrum antiviral properties may serve as key materials for developing specific antiviral approaches to interrupt viral transmission through the cold chain.


Subject(s)
Iron , Refrigeration , Animals , Humans , Swine , Temperature , SARS-CoV-2 , Antiviral Agents , Lipids
7.
Biotechnol J ; 19(1): e2300389, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38047496

ABSTRACT

Antiviral vaccines for pig diseases are essential to prevent epidemic outbreaks. However, their production is often hindered by inefficient manufacturing processes that yield lower quantities of the vaccine. To accelerate the progress of various areas of bioproduction, we have considered the necessity of enhancing viral replication efficiency by optimizing ST (swine testicular) cell lines that are commonly utilized in virus manufacturing. CRISPR/Cas9 gene-editing technology were utilized to create IRF3 or IRF7 knockout cell lines that facilitate high-titer viral stock production. Compared to the parental cell lines, the ST IRF3/7 KO cell line displayed a compromised antiviral response to a panel of viruses (Porcine epidemic diarrhea virus, Senecavirus A, Parainfluenza virus 5, and Getah virus), as evidenced by decreased expression of interferon and certain antiviral factors. The inhibition of these responses led to heightened viral replication and increased cytopathic effects, ultimately promoting apoptosis. As a result, the development of these cell lines offers a more efficient approach for biopharmaceutical companies to boost their virus production and reduce associated costs.


Subject(s)
CRISPR-Cas Systems , Virus Replication , Animals , Swine , CRISPR-Cas Systems/genetics , Cell Line , Virus Replication/genetics , Gene Editing , Antiviral Agents/pharmacology
8.
J Med Virol ; 95(12): e29302, 2023 12.
Article in English | MEDLINE | ID: mdl-38084773

ABSTRACT

Alphavirus is a type of arbovirus that can infect both humans and animals. The amino acid sequence of the 6K protein, being one of the structural proteins of the alphavirus, is not conserved. Deletion of this protein will result in varying effects on different alphaviruses. Our study focuses on the function of the Getah virus (GETV) 6K protein in infected cells and mice. We successfully constructed infectious clone plasmids and created resulting viruses (rGETV and rGETV-Δ6K). Our comprehensive microscopic analysis revealed that the 6 K protein mainly stays in the endoplasmic reticulum. In addition, rGETV-Δ6K has lower thermal stability and sensitivity to temperature than GETV. Although the deletion of the 6K protein does not reduce virion production in ST cells, it affects the release of virions from host cells by inhibiting the process of E2 protein transportation to the plasma membrane. Subsequent in vivo testing demonstrated that neonatal mice infected with rGETV-Δ6K had a lower virus content, less significant pathological changes in tissue slices, and milder disease than those infected with the wild-type virus. Our results indicate that the 6K protein effectively reduces the viral titer by influencing the release of viral particles. Furthermore, the 6K protein play a role in the clinical manifestation of GETV disease.


Subject(s)
Alphavirus , Humans , Animals , Mice , Alphavirus/metabolism , Virulence , Viral Proteins/metabolism , Virus Replication , Amino Acid Sequence
9.
Cell Commun Signal ; 21(1): 361, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110975

ABSTRACT

Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-ß by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.


Subject(s)
Alphavirus , Interferons , Animals , Mice , Cell Line , Immunity, Innate , Immune Evasion
10.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762237

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging virus that poses a significant threat to the global swine industry. Its membrane (M) protein is crucial for virion assembly and virus-host interactions. We selected the hydrophilic region of M protein for prokaryotic expression, purification, and recombinant protein production. Utilizing hybridoma technology, we prepared the monoclonal antibody (mAb) 24-A6 against M protein. The mAb 24-A6 was shown to be suitable for use in immunofluorescence assays, western blotting, and immunoprecipitation, with specificity for PDCoV and no cross-reactivity with other five porcine viruses. The M protein was observed to be expressed as early as 3 h after PDCoV infection, increasing its expression over the duration of infection. Notably, the antigenic epitope of the M protein identified as 103SPESRL108 recognized by mAb 24-A6 was found within a conserved structural domain (SWWSFNPETNNL) of the coronavirus M protein, indicating a crucial overlap between a functionally important viral assembly region and a region recognized by the immune system. Our findings provide valuable insights into mAb 24-A6 targeting the antigenic epitope of M protein and may contribute to the development of diagnostic tools for PDCoV infection and fundamental research into the function of PDCoV M protein.


Subject(s)
Antibodies, Monoclonal , Membrane Proteins , Animals , Swine , Deltacoronavirus , Epitopes
11.
J Med Virol ; 95(9): e29104, 2023 09.
Article in English | MEDLINE | ID: mdl-37721411

ABSTRACT

Swine acute diarrhea syndrome (SADS) is first reported in January 2017 in Southern China. It subsequently causes widespread outbreaks in multiple pig farms, leading to economic losses. Therefore, it is an urgent to understand the molecular mechanisms underlying the pathogenesis and immune evasion of Swine acute diarrhea syndrome coronavirus (SADS-CoV). Our research discovered that SADS-CoV inhibited the production of interferon-ß (IFN-ß) during viral infection. The nonstructural protein 1 (nsp1) prevented the phosphorylation of TBK1 by obstructing the interaction between TBK1 and Ub protein. Moreover, nsp1 induced the degradation of CREB-binding protein (CBP) through the proteasome-dependent pathway, thereby disrupting the IFN-ß enhancer and inhibiting IFN transcription. Finally, we identified nsp1-Phe39 as the critical amino acid that downregulated IFN production. In conclusion, our findings described two mechanisms in nsp1 that inhibited IFN production and provided new insights into the evasion strategy adopted by SADS-CoV to evade host antiviral immunity.


Subject(s)
Alphacoronavirus , CREB-Binding Protein , Animals , Swine , Phosphorylation , Amino Acids , Interferon-beta/genetics
12.
J Virol ; 97(6): e0068923, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37289083

ABSTRACT

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Subject(s)
Coronavirus Infections , Goblet Cells , Receptors, Notch , Swine Diseases , Animals , Coronavirus , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Goblet Cells/cytology , Signal Transduction , Swine , Swine Diseases/pathology , Swine Diseases/virology , Stem Cells/cytology , Cell Differentiation , Receptors, Notch/metabolism
13.
Food Chem Toxicol ; 177: 113803, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37120089

ABSTRACT

This study explored protective effects of melatonin (MEL) on deoxynivalenol (DON)-induced toxicity in porcine jejunum epithelial cells (IPEC-J2). Cells were preexposed to MEL and then exposed to DON to detect cell viability, apoptosis, and oxidative stress indicators. Compared to DON treatment, pretreatment with MEL significantly increased cell proliferation. (P < 0.01), intracellular catalase (CAT) and superoxide dismutase (SOD) levels (P < 0.05), decreased apoptosis and oxidative stress, and significantly attenuated the inflammatory response. RNA-seq analysis revealed that MEL protects IPEC-J2 from the adverse effects of DON by affecting the expression of tight junction and autophagy pathway-related genes. Similarly, further experiments revealed that MEL partly prevented DON-induced disruption of intestinal barrier function and decreased autophagy induced by DON via activation of the AKT/mTOR pathway. In conclusion, these results demonstrated the preventive properties of MEL against DON-induced cell damage by activating the antioxidant system and Inhibition of autophagy.


Subject(s)
Melatonin , Animals , Swine , Melatonin/pharmacology , Cell Line , Oxidative Stress , Epithelial Cells , Autophagy
14.
Microbiol Resour Announc ; 12(1): e0094322, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36598252

ABSTRACT

In 2021, two atypical porcine pestivirus (APPV) strains, AH06/2021 and AH22/2021, were identified from suckling piglets showing congenital tremor in Anhui Province, China. Genome sequence analysis indicated that the two strains shared 81.19% to 93.98% nucleotide identities with other APPV strains.

15.
Carbohydr Polym ; 300: 120260, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372488

ABSTRACT

Inefficient use of traditional pesticides causes serious environmental pollution. Stimuli-responsive pesticide formulations improve the utilization efficiency of target pests and reduce harm to non-target organisms and the environment. Herein, multi-stimuli-responsive avermectin (AVM) polyurea microcapsules (AVM@CM-SS-PU) are prepared by interfacial polymerization with modified carboxymethyl cellulose CMC-SS-NH2 as the wall material and hexadecane as the temperature-responsive core. The microcapsules are 3.90 µm in size and the encapsulation efficiency of AVM is 88.23 %. The photostability of AVM@CM-SS-PU is 5-times that of AVM solution. The insecticidal effect of AVM solution and AVM emulsifiable concentrate (EC) decreases to 13.3 % and 16.6 %, respectively, after UV irradiation for 180 min, whereas that of AVM@CM-SS-PU still remains at 50.0 %. AVM@CM-SS-PU has better foliar affinity and releases under the stimuli of temperature, glutathione, pH, cellulase, and urease. Hence, it has high insecticidal activity and biosafety. This smart controlled-release pesticide formulation provides a promising solution for green agriculture.


Subject(s)
Insecticides , Pesticides , Capsules/chemistry , Pesticides/chemistry , Ivermectin/chemistry , Insecticides/chemistry , Delayed-Action Preparations/chemistry
16.
Asia Pac J Clin Oncol ; 19(5): e223-e230, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36065151

ABSTRACT

BACKGROUND: The mechanism of acquired resistance of tamoxifen in endocrine therapy of breast cancer is not fully understood. In this study, we investigated the genomic changes in acquired tamoxifen-resistant cell lines. METHODS: Tamoxifen-resistant subclones (MCF-7R) derived from parent MCF-7 cells, which is an ER(+) breast cancer cell line, cultured with 4-hydrotamoxifen more than 6 months were used to obtain genomic alterations. Cell growth, microarray, and quantitative real-time PCR (q-RTPCR) assays were conducted. Additionally, the ITGB1 function was investigated in MCF-7R cells and MCF-7R ITGB1-silenced subclones using MTT and Transwell assays. Online pathway analysis was performed to assess the genetic characteristics of tamoxifen resistance. RESULTS: The gene expression profile of the tamoxifen-resistant cell line was considerably changed compared to the tamoxifen-sensitive cell line. Of 4102 genes with altered expressions, 1986 genes were upregulated, whereas 2116 were downregulated. The ITGB1 expression in MCF-7R cells was higher than that in MCF-7 cells. Interestingly, ITGB1 silencing partially rescued the sensitivity of MCF-7R cells to tamoxifen and reduced their motility. The activation of the ß1-integrin signaling pathway was probably responsible for this phenomenon. CONCLUSIONS: Our data confirm the presence of alterations in the genes of tamoxifen-resistance breast cancer cells. ITGB1 probably partially contributes to tamoxifen resistance and cell motility via the ß1-integrin signaling pathway. Thus, ITGB1 may be a potential target for the improvement of anti-hormone therapy reaction in ER(+) breast cancer patients.


Subject(s)
Breast Neoplasms , Tamoxifen , Female , Humans , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Integrin beta1/genetics , Integrin beta1/metabolism , Integrin beta1/pharmacology , MCF-7 Cells , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
17.
Front Cell Infect Microbiol ; 13: 1338740, 2023.
Article in English | MEDLINE | ID: mdl-38317792

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a member of the genera Alphacoronavirus that has been associated with acute watery diarrhea and vomiting in swine. Unfortunately, no effective vaccines and antiviral drugs for PEDV are currently available. Reverse genetics systems are crucial tools for these researches. Here, a PEDV full-length cDNA clone was constructed. Furtherly, three PEDV reporter virus plasmids containing red fluorescent protein (RFP), Nano luciferase (Nluc), or green fluorescence protein (GFP) were generated using Red recombination with the GS1783 E. coli strain. These reporter-expressing recombinant (r) PEDVs showed similar growth properties to the rPEDV, and the foreign genes were stable to culture up to P9 in Vero cells. Using the Nluc-expressing rPEDV, the replication of PEDV was easily quantified, and a platform for rapid anti-PEDV drug screening was constructed. Among the three drugs, Bergenin, Umifenovir hydrochloride (Arbidol), and Ganoderma lucidum triterpenoids (GLTs), we found that GLTs inhibited PEDV replication mainly after the stage of virus "Entry". Overall, this study will broaden insight into the method for manipulating the PEDV genome and provide a powerful tool for screening anti-PEDV agents.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Vero Cells , Coronavirus Infections/veterinary , Escherichia coli , Recombination, Genetic , Diarrhea
18.
Front Immunol ; 13: 1050354, 2022.
Article in English | MEDLINE | ID: mdl-36505441

ABSTRACT

Porcine sapelovirus (PSV) is an emerging pathogen associated with symptoms of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in swine, resulting in significant economic losses. Although PSV is reported to trigger cell apoptosis, its specific molecular mechanism is unclear. In this research, the cell apoptosis induced by PSV infection and its underlying mechanisms were investigated. The morphologic features of apoptosis include nuclear condensation and fragmentation, were observed after PSV infection. The cell apoptosis was confirmed by analyzing the apoptotic rates, caspase activation, and PARP1 cleavage. Caspase inhibitors inhibited the PSV-induced intrinsic apoptosis pathway and reduced viral replication. Among the proteins encoded by PSV, 2A is an important factor in inducing the mitochondrial apoptotic pathway. The conserved residues H48, D91, and C164 related to protease activity in PSV 2A were crucial for 2A-induced apoptosis. In conclusion, our results provide insights into how PSV induces host cell apoptosis.


Subject(s)
Apoptosis , Mitochondria , Swine , Animals , Caspase Inhibitors , Proteolysis , Protein Processing, Post-Translational
19.
Microbiol Spectr ; 10(6): e0209022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314961

ABSTRACT

Recurrent outbreaks of senecavirus A (SVA)-associated vesicular disease have led to a large number of infected pigs being culled and has caused considerable economic losses to the swine industry. Although SVA was discovered 2 decades ago, knowledge about the evolutionary and transmission histories of SVA remains unclear. Herein, we performed an integrated analysis of the recombination, phylogeny, selection, and spatiotemporal dynamics of SVA. Phylogenetic analysis demonstrated that SVA diverged into two main branches, clade I (pre-2007 strains) and clade II (post-2007 strains). Importantly, analysis of selective strength showed that clade II was evolving under relaxed selection compared with clade I. Positive selection analysis identified 27 positive selective sites, most of which are located on the outer surface of capsid protomer or on the important functional domains of nonstructure proteins. Bayesian phylodynamics suggested that the estimated time to the most recent common ancestor of SVA was around 1986, and the estimated substitution rate of SVA was 3.3522 × 10-3 nucleotide substitutions/site/year. Demographic history analysis revealed that the effective population size of SVA has experienced a gradually increasing trend with slight fluctuation until 2017 followed by a sharp decline. Notably, Bayesian phylogeographic analysis inferred that Brazil might be the source of SVA's global transmission since 2015. In summary, these data illustrated that the ongoing evolution of SVA drove the lineage-specific innovation and potentially phenotypically important variation. Our study sheds new light on the fundamental understanding of SVA evolution and spread history. IMPORTANCE Recurrent outbreaks and global epidemics of senecavirus A-associated vesicular disease have caused heavy economic losses and have threatened the development of the pig industry. However, the question of where the virus comes from has been one of the biggest puzzles due to the stealthy nature of the virus. Consequently, tracing the source, evolution, and transmission pattern of SVA is a very challenging task. Based on the most comprehensive analysis, we revealed the origin time, rapid evolution, epidemic dynamics, and selection of SVA. We observed two main genetic branches, clade I (pre-2007 strains) and clade II (post-2007 strains), and described the epidemiological patterns of SVA in different countries. We also first identified Brazil as the source of SVA's global transmission since 2015. Findings in this study provide important implications for the control and prevention of the virus.


Subject(s)
Picornaviridae , Swine Diseases , Swine , Animals , Phylogeny , Bayes Theorem , Genome, Viral , Picornaviridae/genetics , Swine Diseases/epidemiology
20.
Dig Dis Sci ; 67(9): 4410-4421, 2022 09.
Article in English | MEDLINE | ID: mdl-34797444

ABSTRACT

BACKGROUND: Slow transit constipation (STC) is caused by intestinal peristalsis dysfunction and is closely associated with disturbance of the intestinal microecological balance. Bacillus subtilis plays a positive role in the treatment of STC, but its mechanism needs to be further explored. AIMS: The purpose of the present study was to explore the effects and mechanism of B. subtilis on the pathophysiology of STC. METHODS: A STC mouse model was established with compound diphenoxylate, following which B. subtilis was used to treat STC. The effects and possible mechanism of B. subtilis on STC were investigated by assessing intestinal motility, histology of the colon, release of 5-HT in enterochromaffin cells (ECs) and the TGR5/TRPA1 pathway. Moreover, LC-MS targeted metabolomics was used to analyze the regulation of Bacillus subtilis on bile acid metabolisms in STC mice. RESULTS: Bacillus subtilis significantly increased 24 h defecations, fecal moisture and intestinal transport rate of STC mice, improved pathological damage of the colon and showed protective effects on the intestinal tract. The release of 5-HT from ECs and the bile acid receptor TGR5/TRPA1 pathway were significantly increased in STC mice treated with B. subtilis. In addition, the metabolomics results showed that the bile acid contents of STC mice were significantly decreased, and B. subtilis could increase the bile acid composition and content of STC mice. CONCLUSION: Bacillus subtilis regulates intestinal peristalsis of STC by promoting the release of 5-HT from ECs through bile acid metabolism and its receptor TGR5 pathway and plays a positive role in the treatment of STC.


Subject(s)
Bile Acids and Salts , Peristalsis , Animals , Bacillus subtilis/metabolism , Constipation , Mice , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL
...